The effect of length and diameter of dental implants on primary stability (experimental study on tibia of the sheep)

Huda A. Salim, Alyaa I. Naser, Abdulhameed N. Aldabagh

ABSTRACT

Aims: The aim of this study was to assess the effect of different length and diameter of the implant on primary stability and was measured by Osstell mentor. Methods: Ten fresh natural tibia bones of sheep and fifty-five dental implants were used in this study. The sheep bones were divided into two groups. In one group the different length with the same diameter was considered, while in second group different diameter with the same length was included. An incision was made along the longitudinal axis of the lateral surface of the tibia. Drilling was accomplished in a sequence recommended by the system manufacturer. Thereafter, dental implants were carefully installed and fixed manually till implant bodies submerged in the bone. Osstell device was used to evaluate the resonance frequency after implant placement. Results: After statistical analysis obtained from the values of resonance frequency analysis (RFA), it was found that when implant length was increased, there was an increase in implant stability. There was increase in the primary stability with an increase in the implant diameter as well. Conclusion: Primary stability is the most important clinical goal to be achieved at the time of implant placement. RFA has great potential to predict implant stability while being noninvasive and reproducible.

Keywords: Bone, Length, Osstell mentor, Primary stability, Resonance frequency analysis

INTRODUCTION

Dental implants represent one of the most successful, principal, and established treatmentmodalities in modern medicine for replacement of missing teeth [1]. Primary stability defined as the biomechanical stability of the implant at the time of insertion within the bone, it plays an essential role and prerequisites for successful osseointegration of dental implant [2–4]. Implant stability is considered as a gauge of the clinical immobility of an implant through its indirect effect on the osseointegration process. Regarding the type of bone, implant stability can be classified into primary stability for cortical bone and secondary stability for cancellous bone [5]. The degree of primary stability depends on factors like morphology of implant, quality, and quantity of bone, surgical procedures, and skills of the surgeon, secondary implant stability depends on the response of tissue to surgery and implant material [6, 7]. An increase in implant stability was found with increasing levels of osseointegration [8]. RFA has been recognized as a non-aggressive, conservative, dependable, easily foreseeable, and objective method of quantifying implant stability by measuring the frequency of implant oscillation inside the bone [9, 10]. Osstell Mentor® (Osstell AB, Göteborg, Sweden) device used for assessing RFA and the unit for
measurement is implanted stability quotient (ISQ) which converting kHz (3,500–8,500) unit to values scale vary from 1 to 100, the higher ISQ the higher of stability [11, 12]. In general, the preferred implant lengths was used range from 8 mm to 15 mm, which is approximately resemble the length of natural teeth roots [13].

MATERIALS AND METHODS

Fifty five dental implants, (Dentium Co. Ltd, Suwon, Korea) and ten fresh natural tibia bones of sheep procured from the butcher shop were used for this study. These bones were divided into two groups: one group had different length with the same diameter and second group had different diameter with the same length. A 3 cm skin incision was done parallel to the long axis of the lateral surface of the tibia. Afterward, dissection of fascia was started and full thickness flap was reflected (Figure 1). Serial drilling was accomplished following system manufacturer’s references, i.e. preparation starts by Linderman guide 2.2 mm drill followed by Linderman first drill 2.6 mm then by final drill followed by countersink. Drilling was made in an intermittent manner. The osteotomy site was prepared according to standard drilling protocol, five dental implants (D3.6 L10 mm) insert in the tibia. At room temperature (25c) normal saline solution was used as irrigating the place and to preserve the continuity throughout drilling by using the cooling system and at a constant ratio (40 ml/minute). Drill speed is fixed at 1062 rpm and the torque maintained at 50 n\cm, (high dense bone) the gear ratio is 1:32. Subsequently, a dental implant was installed manually until implant bodies submerged in bone. After fixing a transducer to the fixture (smart pegTM) by hand and tightened, the resonance frequency amount was evaluated using the Osstell device. Then measurements probe was held close to the top of the smart peg. At distance about 2–3 mm, the smart peg is stimulated by a magnetic pulse from the measurement probe. On the Osstell mentor screen, the results are displayed. The ISQ is estimated from the response signal. It is scaled from 1 to 100, the higher the number the superior the stability. ISQ values were measured four times perpendicular to smart peg, and one time in parallel orientations to it i.e. (anterior, posterior, mesial, distal, and perpendicular). Moreover, the average was recorded as final reading (1 was considered as least stable to 100 most stable).

Statistical analysis

The data were processed statistically using the SPSS version 21 for Windows 10 Pro, Lenovo laptop, think pad L460. The association between lengths at the same diameter was studied using Friedman Npar test. Wilcoxon signed ranks test was used in one hand for comparing between lengths at same diameters and in the other hand for comparing between diameters at same lengths.

RESULTS

Analysis between lengths at the same diameters (D1 = 3.6 mm, D2 = 4.5 mm) with Friedman test revealed a significant difference between them and P-values are 0.00 for both diameters as shown in Table 1. Wilcoxon signed rank test was used to evaluate the exact significant for difference between lengths. There were significant differences between lengths 10 mm–12 mm and between 7 mm–12 mm, while no significant difference between 7 mm – 10 mm in which p-value was 0.170 as shown in Table 2. For determining the significant diameter at same length Wilcoxon Signed Rank test clarified that difference appeared significant only at length 7 mm as shown in Table 3.

DISCUSSION

Primary stability is the most important clinical goal to be achieved at the time of implant placement. Regarding implant parameters, diameter and length play crucial roles in implant success. Since they straightway influenced the primary stability [4]. RFA has great potential to predict implant stability while being noninvasive and reproducible. These devices could be useful in evaluating the status of bone – implant healing process associated with a recently placed implant [2, 14]. Kokovic et al. found that the primary stability of the implant with 10 mm length higher than implants with a length of 8 mm. The result of the present study coincided with these findings; in comparison, no difference was found when
was a good bone quality on the implant side. However, in the Barikani et al. study, the length of the implant did not have any significant effect on primary stability when there was more heat generated due to the long bone drilling [7], while in our study the increase of implant length up to 12 mm resulted in increased primary stability compared to implants 13 mm in length, smaller length [4]. Bataineh AB, Al-Dakes AM. The influence of length of implant on primary stability: An in vitro study using resonance frequency analysis. J Clin Exp Dent 2017;9(1):e1–6.

CONCLUSION

Increase in implant length was directly proportional to increase in the implant stability, also when the implant diameter increased with implant length the primary stability increased.

REFERENCES

3. Salim et al. 3

Acknowledgments
Great thanks to Department of Oral and Maxillofacial Surgery, College of Dentistry, the University of Mosul for its support and facilities.

Author Contributions
Huda A. Salim – Conception of the work, Design of the work, Acquisition of data, Analysis of data, Interpretation of data, Drafting the work, Revising the work critically for important intellectual content, Final approval of the version to be published, Agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved
Alyaa I. Naser – Conception of the work, Design of the work, Acquisition of data, Analysis of data, Interpretation of data, Drafting the work, Revising the work critically for important intellectual content, Final approval of the version to be published, Agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved
Abdulhameed N. Aldabagh – Conception of the work, Design of the work, Acquisition of data, Analysis of data, Interpretation of data, Drafting the work, Revising the work critically for important intellectual content, Final approval of the version to be published, Agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved

Guarantor of Submission
The corresponding author is the guarantor of submission.

Source of Support
None.

Consent Statement
Written informed consent was obtained from the patients for publication of this article.

Conflict of Interest
Authors declare no conflict of interest.

Data Availability
All relevant data are within the paper and its Supporting Information files.

Copyright
© 2019 Huda A. Salim et al. This article is distributed under the terms of Creative Commons Attribution License which permits unrestricted use, distribution and reproduction in any medium provided the original author(s) and original publisher are properly credited. Please see the copyright policy on the journal website for more information.
Submit your manuscripts at
www.edoriumjournals.com